A photochemical method for patterning the immobilization of ligands and cells to self-assembled monolayers.
نویسندگان
چکیده
This work describes a chemically well defined method for patterning ligands to self-assembled monolayers (SAMs) of alkanethiolates on gold. This method begins with monolayers presenting a nitroveratryloxycarbonyl (NVOC)-protected hydroquinone which is photochemically irradiated to reveal a hydroquinone group. The resulting hydroquinone is then oxidized to the corresponding benzoquinone, providing a site for the Diels-Alder mediated immobilization of ligands. The rate constant for the photochemical deprotection is 0.032 s(-1) (with an intensity of approximately 100 mW/cm(2) between 355 and 375 nm), corresponding to a half-life of 21 s. The hydroquinone is oxidized to the benzoquinone using either electrochemical or chemical oxidation and then functionalized by reaction with a cyclopentadiene-tagged ligand. Two methods for patterning the immobilization of ligands are described. In the first, the substrate is illuminated through a mask to generate a pattern of hydroquinone groups, which are elaborated with ligands. In the second method, an optical microscope fit with a programmable translational stage is used to write patterns of deprotection which are then again elaborated with ligands. This technique is characterized by the use of well-defined chemical reactions to control the regions and densities of ligand immobilization and will be important for a range of applications that require patterned ligands for biospecific interactions.
منابع مشابه
Thiol-mediated anchoring of ligands to self-assembled monolayers for studies of biospecific interactions.
We report a method to immobilize thiol-containing ligands onto self-assembled monolayers (SAMs) of alkanethiolates presenting chloracetylated hexa(ethylene glycol) groups. The chloroacetyl groups react with thiols under mild basic conditions, enabling the stable immobilization of biologically active ligands in a well-defined orientation. These SAMs on gold are well suited for studies of biospec...
متن کاملPhotolithographic Technique for Direct Photochemical Modification and Chemical Micropatterning of Surfaces
We describe a photolithographic method for the direct modification and micropatterning of the surface chemical structure of self-assembled monolayers. End-functional azobenzene alkanethiols are designed and synthesized so that, when self-assembled onto gold substrates, an acid-sensitive tert-butyl ester end group is positioned at the air-monolayer interface. Upon exposure to UV radiation in the...
متن کاملAttachment of cells to islands presenting gradients of adhesion ligands.
Mammalian and bacterial cells live in gradients. Soluble and immobilized gradients of signaling proteins guide the trafficking of cells and direct their development and maintenance.1 New methods to determine the influence of gradients in solution on cellular function have been critical to understanding chemotaxis,2a differentiation,2b and morphogenesis.2c The development of strategies to prepar...
متن کاملCombining self-assembled monolayers and mass spectrometry for applications in biochips.
Biochip arrays have enabled the massively parallel analysis of genomic DNA and hold great promise for application to the analysis of proteins, carbohydrates, and small molecules. Surface chemistry plays an intrinsic role in the preparation and analysis of biochips by providing functional groups for immobilization of ligands, providing an environment that maintains activity of the immobilized mo...
متن کاملAntibody arrays prepared by cutinase-mediated immobilization on self-assembled monolayers.
Antibody arrays hold considerable potential in a variety of applications including proteomics research, drug discovery, and diagnostics. Many of the schemes used to fabricate the arrays fail to immobilize the antibodies at a uniform density or in a single orientation; consequently, the immobilized antibodies recognize their antigens with variable efficiency. This paper describes a strategy to i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 20 17 شماره
صفحات -
تاریخ انتشار 2004